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SUMMARY

A new method is described for the iterative solution of two-dimensional free-surface problems, with
arbitrary initial geometries, in which the interior of the domain is represented by an unstructured,
triangular Eulerian mesh and the free surface is represented directly by the piecewise-quadratic edges of
the isoparametric quadratic-velocity, linear-pressure Taylor–Hood elements. At each time step, the
motion of the free surface is computed explicitly using the current velocity field and, once the new
free-surface location has been found, the interior nodes of the mesh are repositioned using a continuous
deformation model that preserves the original connectivity. In the event that the interior of the domain
must be completely remeshed, a standard Delaunay triangulation algorithm is used, which leaves the
initial boundary discretisation unchanged. The algorithm is validated via the benchmark viscous flow
problem of the coalescence of two infinite cylinders of equal radius, in which the motion is due entirely
to the action of capillary forces on the free surface. This problem has been selected for a variety of
reasons: the initial and final (steady state) geometries differ considerably; in the passage from the former
to the latter, large free-surface curvatures—requiring accurate modelling—are encountered; an analytical
solution is known for the location of the free surface; there exists a large body of literature on alternative
numerical simulations. A novel feature of the present work is its geometric generality and robustness; it
does not require a priori knowledge of either the evolving domain geometry or the solution contained
therein. Copyright © 1999 John Wiley & Sons, Ltd.
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tion; viscous sintering

1. INTRODUCTION

An understanding of the dynamics of free-surface phenomena is of significance in a wide
variety of scientific and engineering disciplines [1,2] and, to this end, this broad subject area
has yielded numerous experimental [3,4], theoretical [5,6] and numerical [7,8] investigations. It
is with reference to the last of these that the present work is motivated. Specifically, the
objective has been to develop an algorithm that is capable of dealing with, both accurately and
robustly, the apparently conflicting factors of: the need for geometric generality, including
problems comprising regimes of widely varying free-surface curvature; the avoidance of
excessive user interaction and problem-specific codes. The desire for generality is driven by the
immense range of free-surface phenomena arising in practical applications, e.g. overturning
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waves [9], droplet and bubble formation [10,11], viscous sintering [12–14] and coating flows
[15–17]. The disparate nature of the problems modelled in each of the above areas has led
to the successful development of a wide variety of simulation software, usually comprising
variations on either the boundary element method (BEM) [12,13] or the finite element
method (FEM) [18,19].

Where only the motion of the free surface is required, the BEM [20] is often preferred,
since it results in systems of equations involving only free-surface unknowns. Where
an interior flow solution is also required, the advantages of the BEM are less obvious, since
the interior solution can only be post-computed at considerable expense once the free-
surface motion has been found. Furthermore, the BEM Green’s function-based formula-
tion is applicable to only those problems for which the governing partial differential
equation(s) (PDE(s)) and boundary conditions admit a suitable transformation into
integral form. Given the objective of algorithmic generality, the FEM is therefore opted
for.

In the context of free-surface simulation via the FEM, two main interrelated practical
aspects are evident. First, an interior mesh must be maintained throughout so that the
interior flow may be calculated; second, as the domain evolves, an efficient means must be
found to modify this mesh at each iteration. Typically, existing FEM strategies for achiev-
ing this employ a fixed mesh topology together with some form of continuous mesh
deformation [19,21,22]. Both the mesh topology and the particular form of continuous
deformation to be employed must be chosen in advance for every problem. Continuous
deformation techniques have the important practical advantage that, where relevant, the
effects of motion of the mesh can be accounted for analytically, thus avoiding the need to
perform interpolation of the solution between meshes at each time step [23]. Moreover,
coupled with the problem of updating the mesh is that of updating the representation of
the free surface itself, which ideally should be achieved through the use of the kinematic
boundary condition alone. Frequently, other aspects, such as conservation of mass [22], are
also explicitly taken into consideration, despite the fact that this presupposes incompressibil-
ity, thereby eroding the generality of the method.

Within the current algorithm the free surface is represented in a natural way by the edges
of the isoparametric elements forming the boundary, and evolution of this free surface is
driven purely by the kinematic boundary condition. At each iteration, the perturbation to
the current boundary is used to modify the interior mesh as though it were deforming in a
continuous fashion.

The quality of this evolving mesh is continually monitored using a variety of geometric
indicators and, when mesh quality falls below prescribed thresholds, the mesh is regenerated
anew, preserving only the locations of the boundary nodes. Full details relating to the
initial generation, and subsequent modifications, of the mesh are presented in Section 2.

Throughout the remainder of the paper, the application of the current method is facili-
tated by focusing on a specific two-dimensional problem, described in Section 3, namely the
Stokes-flow coalescence of two parallel infinite fluid cylinders of unit radius, in which the
motion is due entirely to the action of capillary forces at the free surface. The problem
chosen has been the subject of a number of theoretical [24] and numerical [13,14,18]
investigations, and therefore many results are available for the purpose of comparison. In
Section 4 we describe in detail the flow solver used for the test problem, and the results
obtained are discussed with regard to both accuracy and efficiency.
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2. MESH GENERATION

The main difficulty in applying the FEM to free-surface problems is the need to specify a
procedure for constructing meshes over a domain, the shape of which is a priori unknown. For
those FEM problems that involve free surfaces that move little during the computation, an
initial mesh can be updated simply by using a continuous deformation algorithm that
maintains the same mesh connectivity throughout the problem. In preserving the connectivity,
we also preserve the sparsity patterns of the various matrices that arise in the discretisation and
solution of the problem e.g. stiffness and mass matrices, Jacobians, preconditioners, etc., with
obvious efficiency advantages. Although for more general problems the need to remesh cannot
be avoided completely, the aim is to do so as infrequently as possible.

To set the methods described below into context, Figure 1 is included, illustrating the
semi-explicit scheme employed in the current work. The use of an explicit free-surface update
step in this scheme places limitations on the size of time step that may be employed if stability
is to be ensured. For this reason, fully-implicit methods are often preferred. There are,
however, many problems for which the time step restrictions are not so severe and in these
cases semi-explicit methods can be cost-effective, particularly where time accuracy is impor-
tant. The advantages of employing the semi-explicit method are that the system of differential
algebraic equations (DAEs) that must be solved at each time step is linear, if the underlying
computational fluid dynamic (CFD) problem is itself linear; that the resulting matrices are
symmetric; and that the locations of the free-surface nodes need not be considered as variables
during the flow solution phase—resulting in a substantial reduction in computational cost.
While the discussion is here restricted to the semi-explicit case, many of the techniques
described below are equally applicable to fully-implicit schemes, such as those employed by the
DAE solvers (such as DDASPK [25]) commonly used to solve the stiff systems of equations
frequently arising from incompressible flow problems.

2.1. Mesh quality

For those problems in which the free-surface boundary conditions depend on the shape of
the free surface, e.g. when surface tension is involved, the overall accuracy of the solution

Figure 1. Outline of the semi-explicit scheme for free-surface flow problems.
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depends critically on the resolution of the mesh at the boundary. This is because the accuracy
of the free-surface boundary conditions depends directly on the accuracy of the free-surface
representation. Thus, the convergence rate of the solution is limited to the rate of convergence
of the discrete boundary conditions, potentially presenting great difficulties due to practical
constraints on computational resources. Fortunately, however, for two-dimensional problems,
while the number of interior unknowns increases quadratically with resolution, the number of
boundary unknowns increases only linearly. Thus, the use of a finer discretisation on the
boundary than in the interior of the domain may be feasible, whereas uniform refinement to
obtain boundary conditions of comparable accuracy would not be. Unstructured meshes of
six-node, isoparametric, quadratic triangular elements [26] are employed, allowing far more
accurate representations of curved boundaries to be obtained than could be achieved using
linear elements.

The first step in meshing a domain V is the discretisation of the boundary (V. For
simplicity, the discussion here is restricted to the case in which the boundary can be
represented by a closed curve parameterised by arc length s. For a piecewise-quadratic
boundary representation it is natural to discretise so that the derivative of curvature with
respect to arc length is taken into account. Unfortunately, finite numerical precision makes this
approach problematic [13], and, therefore, boundary discretisations are employed, chosen such
that for each element edge (Ve in (V, the curvature k(s) is equi-distributed according to&

(Ve

k ds5ktol, (1)

where ktol is a prescribed parameter. It is further required that the edge length be constrained
so that&

(Ve

ds5hmax, (2)

where hmax is a prescribed parameter. In addition, the following constraints are imposed on the
boundary edge length:&

(Ve

ds5a
&
(Ve+1

ds (3)

and &
(Ve

ds5a
&
(Ve−1

ds, (4)

where a is a mesh smoothness parameter, chosen to prevent the ratio of lengths of adjacent
boundary edges being too large. The numerical experiments suggest that a value of a=2.5 is
satisfactory for most problems.

Interior meshes are generated using Triangle [27], Shewchuk’s automatic two-dimensional
Delaunay mesh generating package. Based upon Ruppert’s Delaunay refinement algorithm
[28], Triangle can selectively refine an initial mesh, deciding whether to split each triangle
according to a set of area constraints associated with the triangles of the original mesh; in so
doing it guarantees to produce a mesh with no interior angle less than 20.7°. This property is,
however, potentially compromised when Triangle is used to generate a boundary conforming
mesh, i.e. is not allowed to split boundary edges. To prevent this difficulty arising, in particular
when boundary discretisations with large variations in edge length are employed, the interior
mesh must be graded so that the edge length does not alter too greatly between neighbouring
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elements. This is achieved by associating with each element i, of some initial mesh, a length li
given by

li=min
�

hmax, min
j

�
hj+

1
2

�mj−ci ���, (5)

where mj is the location of the midpoint of edge j and hj is its length and ci is the centroid of
element i, and where we minimise over the boundary nodes j=1, . . . , NB. This translates into
a corresponding maximum area constraint ai given by

ai=

4
3

l i
2. (6)

In other words, ai is chosen to be the area of the equilateral triangle with side li. While the
choice of the above grading is entirely motivated by the need to ensure adequate mesh quality,
i.e. for essentially geometric reasons, in practice, for surface tension-driven flows at least, the
patterns of local refinement that arise are similar to those that might be chosen when
adaptively refining with respect to stress gradients.

2.2. Time stepping

For free-surface fluid flow problems, the motion of the free surface is described by the
kinematic boundary condition. With a first-order explicit free-surface advection scheme, such
as the one described below, the kinematic boundary condition, together with the solution at
the current time level and the currently selected time step, are used to extrapolate the new
location of the free surface from the old.

At the end of a typical time step, the mesh of the interior of the domain is updated using
an elastic mesh model based upon that described by Lynch in [29]. This involves solving a
linear elasticity problem for interior vertex displacements, using boundary vertex displacements
as boundary conditions. The linear elasticity model takes the form of a Poisson problem

9 · (C9x)= f, (7)

where x is a vector of interior vertex displacements, f is a vector representing a body force and
C is the elasticity tensor. For simplicity, f has been taken to be zero and C to be the identity
tensor.

Discretising an appropriate weak-form of (7) using linear elements by applying the Galerkin
method, a symmetric positive definite system of linear equations is obtained. This auxiliary
system is typically much smaller than the system arising from the main problem and needs only
to be solved approximately. This can be achieved cost-effectively using an iterative method; in
practice, the cost of such a solution is small, typically much less than 0.1% of the cost of the
solution of the main system of equations. The perceived advantage of Lynch’s method is that,
for sufficiently small time steps at least, the continuous nature of the boundary displacement
field results in a continuous displacement field for the interior nodes and thus tangling of the
mesh, due to the crossing over of vertices into adjacent elements, cannot occur.

To allow further generality in the experiments, a simple pointwise weighted-Jacobi mesh-
smoothing operator is applied to the mesh after each elastic mesh solve. This amounts to
updating the position ri of each interior node according to the following iterative scheme

ri
(n+1)= (1−v)ri

(n)+
v

N
%
N

j=1

rj
(n), (8)
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where j sums over the N neighbouring vertices of vertex i, and v is a relaxation parameter,
typically taken to be 0.1. The smoothing operator (8) is applied a small number of times
(540) after every elastic mesh solve, rather than iterating to full convergence, the Jacobi-type
approach being preferred since it does not introduce any effects dependent upon node
ordering.

2.3. Remeshing criteria

Remeshing of the domain is inefficient for two reasons. Firstly, it forces the DAE or ODE
solver to restart, typically necessitating a reduction in the time step. Secondly, and equally
importantly, for many PDEs it forces expensive and potentially inaccurate interpolations of
solutions to be performed between meshes. In order to minimise the frequency of remeshing,
a strategy of periodic incremental boundary modification is adopted, involving the splitting
and/or merging of boundary edges as necessary. Whenever boundary edges are split or merged
at least part of the domain must be remeshed (for simplicity, the entire domain is always
remeshed) and, consequently, the algorithm is designed to postpone any free-surface edge
merge or split operations for as long as is reasonable, so as to be able to perform a set of these
operations at the same time. Postponing an edge merge operation is not so problematic since
it merely reduces efficiency. The splitting of edges is, however, more urgent, since one wishes
always to keep the error in the solution bounded. An attempt is made to reconcile these
conflicting requirements by adopting the strategy of merging edges cautiously but splitting edges
aggressi6ely, as reflected in the choices of the constants discussed in the remainder of this
section.

A full remesh is carried out when dictated by one or more of the following criteria:

1. a boundary edge is too long, i.e.

hi\hmax, (9)

where hi is the length of edge i ;
2. the integral of the modulus of the curvature along an edge is too great, i.e.&

(Vi

�k � ds\ktol; (10)

3. the minimum internal angle has fallen below a prescribed tolerance, i.e.

uminBu, (11)

where umin is the minimum internal angle in the current mesh, and u is the prescribed
tolerance;

4. an edge node is located too far from its corresponding edge midpoint, i.e.

�ei−mi �\bhi, (12)

where ei is the position of edge node i, mi is the midpoint of the chord associated with the
edge and b is a parameter chosen so as to bound the displacements of free-surface edge
nodes from edge midpoints.

The last two criteria reflect constraints that must be applied if the optimum asymptotic rate
of convergence of the FEM is to be achieved [30]. In particular, the third reflects the constraint
that the maximum interior angle in any element must be bounded away from 180°. In practice,
the minimum interior angle is instead bounded away from zero, taking u=10°, in order to
avoid problems that can arise when small angles occur in elements adjacent to the free surface.
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The last criterion is used to trigger a remesh operation whenever a free-surface edge node
is found to be displaced too far from its corresponding edge midpoint. In such (rare)
situations, the edge node must be adjusted, i.e. moved closer to the edge midpoint. A value
of b=1.1 has been found to be satisfactory in practice.

2.4. Remeshing

Once the decision to perform a remesh has been taken, any necessary splitting, merging
and adjustment of boundary edges takes place in three successive phases: first, any merges
are performed, then any splits and finally any adjustments. Note that an edge resulting
from a merge operation in the first phase may be split in the second phase. The criteria
used to decide whether to split or merge edges are detailed below.

2.4.1. Criteria for merging boundary edges. The adjacent edges (Vi and (Vi+1 are merged
in either of the following circumstances:

1. The curvature of two adjacent edges is of the same sign and&
(Vi

�k � ds+
&
(Vi+1

�k � dsBmktol, (13)

where the constant m=0.7 is chosen so that edges are merged cautiously.
2. The combined lengths of a pair of adjacent edges is below a given tolerance, i.e.&

(Vi

ds+
&
(Vi+1

dsB2hmin, (14)

where hmin is a prescribed parameter chosen to limit the minimum boundary edge
length.

2.4.2. Criteria for splitting boundary edges. There are three circumstances in which a
boundary edge must be split:

1. The integral of the modulus of the curvature along the side becomes too great, i.e.&
(Ve

�k � ds\dktol, (15)

where the constant d=0.9 is selected so that edges are split aggressively, preventing
forced remeshes from occurring too often.

2. An edge is too long, i.e.

hi\dhmax. (16)

3. The ratio of adjacent edge lengths is too large, i.e.

hi\r min(hi+1, hi−1). (17)

The value of the constant r is chosen as a compromise between maintaining acceptable
grading of the mesh’s boundary and allowing the merging of edges to occur unhindered.
The interaction of criteria (13) and (15) controls the level of refinement of the mesh
boundary, k being the error indicator employed here. In general, problem-specific error
indicators could replace k.
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Table I. Constants employed in the adaptive mesh generator

Constant Function Minimum Value Maximum
valueemployedvalue

Initial boundary smoothness parameter 1.20a 1.50 2.00
Isoparametric displacement tolerance 1.05b 1.10 1.20
Aggression factor when splitting edges 0.70 0.90d 0.95
Caution factor when merging edges 0.70m 0.90 0.95
Boundary mesh smoothness tolerancer 2.20 2.50 3.00
Minimum interior angle 5.00u 10.00 15.00

2.4.3. Procedures for splitting, merging and adjustment of edges. Once the decision to split or
merge edges has been taken, the question arises of how this can be done with the introduction
of the minimum error. The case of splitting an edge might appear to be the least problematic;
in principle, any piecewise-quadratic boundary edge can be split into two exactly equivalent
piecewise-quadratic edges by an appropriate choice of the new boundary node locations.
Unfortunately, the isoparametric constraint that edge nodes must lie close to edge midpoints
means that this cannot, in general, be achieved. Similar problems arise when edges must be
merged. In order to prevent velocity transients being introduced, it is important to ensure that
the tangents at the ends of the new edge are preserved. In general, however, one cannot expect
to be able to choose a new midpoint that simultaneously lies on the edge bisector, preserves
both endpoint tangents and conserves mass.

With these difficulties in mind, the following compromise strategies are adopted when
locating edge nodes. When merging edges, we proceed by fitting a quadratic Lagrange
interpolation curve through the three vertices making up the pair of edges. We then find the
intersection of this curve with the perpendicular bisector of the chord joining the endpoints of
the new edge and take this to be the new edge node. Similarly, when splitting an edge, we
employ the current Lagrange interpolation curve defined on the edge and find its intersection
with the perpendicular bisector of the chord joining the endpoints, taking this to be the new
vertex. The two new edge nodes are located by similarly bisecting the two halves of the old
edge. Finally, adjustment of edges is performed by finding the intersection of the current
Lagrange interpolation curve with the perpendicular bisector of the chord joining the end-
points of the edge and taking this as the new edge node position.

Table I summarises the various constants employed in the automatic mesh adaptation
scheme. Suggested ranges of values for each constant are listed in the table, together with the
values typically employed. While the number of constants employed appears at first sight to be
a drawback, in practice the values of most are not critical to the operation of the method.

3. A MODEL PROBLEM

In order to validate the method one of the few free-surface problems for which an exact
analytic solution is known—the Stokes flow coalescence of two parallel, infinite cylinders of
unit radius—is considered. Hopper [24] describes an analytical solution for the evolution of
the boundary for this problem. His method does not, however, give quantitative information
about the tangential velocity at the surface nor about the flow in the interior of the domain.
The problem has become a benchmark problem for free-surface methods and has been solved
previously using the BEM [13,14], the FEM on a continuously deforming mesh [18] and the
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2D FREE-SURFACE PROBLEMS 945

FEM on a continuously deforming mesh with local mesh repair [31]. An important practical
advantage of employing a Stokes flow as a test problem is that, at this stage, one does not have
to consider methods for the interpolation of solutions between meshes when remeshing.

In the model problem, two parallel cylinders of unit radius and infinite length are brought
together so that at time t=0 they make contact. As the two cylinders coalesce under the
influence of surface tension, a neck forms between the two cylinders, the curvature of which
is initially unbounded but which decreases rapidly in magnitude as the configuration evolves.
The difficulties associated with the initial singularity, at t=0, are avoided by taking as the
starting point the configuration that occurs at the dimensionless time t=0.2825 (correspond-
ing to a value n=0.7 in van der Vorst’s formulation [14]). Taking this as the initial
configuration requires an accurate discretisation of a boundary along which the magnitude of
the curvature varies between approximately 1 and 100, necessitating a variation in boundary
edge lengths of approximately two orders in magnitude. Figure 2 shows three of the initial
meshes employed to represent the domain at t=0.2825. The grading of the mesh described in
Section 2 can clearly be observed in the figure.

Figure 2. The coalescence of two infinite cylinders—selected initial meshes: (a) ktol=0.2000, hmax=0.3218; (b)
ktol=0.1000, hmax=0.2554; (c) ktol=0.0500, hmax=0.2027.
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Standard six-node Taylor–Hood elements are employed, with pressure degrees of freedom
at the vertices and velocity degrees of freedom at all six nodes, giving a quadratic velocity
interpolant and a linear pressure interpolant. The Taylor–Hood element is used since it is
known to be stable in the Ladyzhenskaya–Babuska–Brezzi (LBB) sense [32] for Stokes and
Navier–Stokes problems.

3.1. Equations and boundary conditions

The dimensional Navier–Stokes equations for an incompressible Newtonian fluid in the
absence of body forces take the form

r
�( ũ
(t0 + (ũ ·9)ũ

n
=h92ũ−9p̃ (18)

and

9 · ũ=0, (19)

where h and r are respectively the dynamic viscosity and density of the fluid. Following [18],
the problem is non-dimensionalised by choosing a length scale L0 and defining characteristic
scales for velocity U0, time T0 and stress s0 by using

U0=
g

h
, (20)

T0=
hL0

g
, (21)

s0=
g

L0

, (22)

where g is the surface tension. Thus, the dimensionless equations

Su
�(u
(t

+ (u ·9)u
n

=92u−9p (23)

and

9 ·u=0 (24)

are obtained, where Su is the dimensionless Suratman number,

Su=
rgL0

h2 . (25)

When the Suratman number is vanishingly small, the Stokes approximation is applicable and
the equations reduce to the form

92u−9p=0, (26)

9 ·u=0. (27)

The motion of the boundary is given by the kinematic boundary condition, i.e. a material
point on the boundary remains on the boundary. Thus, if the free surface is represented by a
curve s(s) parameterised by arc length s, the kinematic boundary condition can be expressed
as
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n ·u=n ·s; , (28)

where n is the outward free-surface normal. The absence of a material derivative in the
momentum equation (26) allows the problem to be solved using quasi-steady state methods.
Thus, only a single linear, steady state fluid dynamics problem need be solved at each time step
to give the velocities required to update the free-surface location, which can then be done
explicitly using the kinematic boundary condition.

For a free-surface problem in which the viscosity of the surrounding fluid is vanishingly
small, the externally imposed tangential stress can be taken to be zero. The normal stress on
the free surface has two components, the first of which corresponds to the pressure of the
surrounding fluid (here taken to be zero), while the second is only present when the free
surface has non-zero surface tension and curvature associated with it. In these circumstances
the stress on the free surface is given by

s= −gkn, (29)

where k is the mean curvature of the free surface.

3.2. Finite element implementation

Following [33] the viscous term in (26) can be rewritten in the equivalent stress-divergence
form to give

92u+9(9 ·u)−9p=0. (30)

If the Galerkin method [26] is now applied to the appropriate weak form of Equation (30), the
discrete momentum equations take the form&

V
9qi ·T dV= −

&
(V

qiŝ ds, (31)

where qi is the corresponding quadratic test function, ŝ is the imposed stress and T is the stress
tensor for a Stokes flow

T=Tij= −pdij+
�(uj

(xi

+
(ui

(xj

�
. (32)

With the stress boundary conditions given by (29), the right-hand-side of the momentum
equation has the form&

(V
qigkn ds. (33)

Unfortunately the direct computation of the curvature of a boundary represented by a
piecewise-discontinuous curve is difficult to achieve in an accurate and reliable manner, chiefly
due to the problems of differentiation in finite precision arithmetic. Computation is facilitated
by using an equivalent form of (33) obtained by integration by parts [34]. Since

kn=
dt
ds

, (34)

where t is the tangent, for a free-surface edge AB
�

we have& B

A

qigkn ds=
& B

A

qig
dt
ds

ds= [qigt]AB −
& B

A

gt
dqi

ds
ds. (35)
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This new boundary integral can be evaluated exactly using a three-point quadrature rule,
where t is given by

t= %
3

i=1

si

dqi

ds
, (36)

where i ranges over the three basis functions active on any particular edge and the si are the
positions of the relevant boundary nodes.

The free-surface boundary location is updated using a first-order explicit scheme. The
kinematic boundary condition (28) is solved for s; using mass consistent normals, as described
by Gresho et al. [35], with the time step being selected using the Courant–Friedrichs–Lewy
(CFL) condition

dt5min
!1

4
lmin

�vmax� , dmax
"

, (37)

where lmin is the length of the shortest edge in the mesh, vmax is the largest velocity found from
the most recent solution, dmax is a prescribed maximum time step and the constant 1

4 arises
since the elements are quadratic. While (37) is generally found to be sufficient, it is sometimes
necessary to employ smaller values of the constant in order to ensure stability.

Finally, we note that, in isolation, the system of equations (30) and (27) is singular. With
purely natural boundary conditions, the null space corresponds to the rigid body translations
and rotations of the domain. The system is made non-singular by imposing the two additional
constraints&

V
u dV=0 (38)

and &
V

�u×r� dV=0, (39)

where the right-hand sides can in principle be replaced by any values for the total momentum
and angular momentum of the system. In order to apply the constraint (39), an origin must be
chosen from which r is to be measured; this is typically taken to be the centre of mass of the
system. The main system of equations, arising from the finite element discretisation of the
CFD problem, is modified to reflect these constraints, giving a symmetric-indefinite system of
the form

Ã
Á

Ä

A
B
C

BT

0
0

CT

0
0
Ã
Â

Å
Ã
Á

Ä

u
p
l

Ã
Â

Å
=Ã
Á

Ä

f
0
0
Ã
Â

Å
, (40)

where f corresponds to the stress boundary conditions and l= (l1, l2, l3) is a vector of
Lagrange multipliers.

4. RESULTS AND DISCUSSION

Perhaps the most important test for any FEM implementation is that the solutions obtained
converge as the mesh is refined, and that they do so at the expected rate. For the later stages
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Table II. The coalescence of two infinite cylinders—initial mesh statistics

ktol hmax BoundaryMesh Elements Unknowns
vertices

1 0.2000 0.3218 112 876 4228
0.1414 0.2867 1482 1132 5470

3 0.1000 0.2554 200 1464 7094
0.0707 0.2276 272 1972 95604
0.0500 0.2027 3805 2714 13 169

of the coalescence, the present method gives excellent results at a moderate cost. However, as
earlier and earlier starting times are considered, the initial neck curvature increases rapidly,
and the size of elements in the neck region must be correspondingly decreased. Thus,
eventually explicit time stepping schemes become prohibitively expensive. For this reason, we
have chosen to work only with problems for which the maximum initial curvature is not too
great.

In general, it can only be expected that the solutions will converge as fast as the boundary
conditions converge. When the correct boundary conditions are known analytically or when
there are no large variations in curvature, mesh independence can be conveniently demon-
strated through a process of uniform refinement applied to an initial quasi-regular mesh.
However, when dealing with geometries with large variations in boundary curvature, this
approach presents difficulties, since a quasi-regular mesh that is sufficiently fine to adequately
resolve the boundary (conditions) can easily give rise to a problem that is too large to solve in
a reasonable time. With this in mind, a family of five quasi-similar meshes has been selected
by making appropriate choices of the parameters hmax, hmin and ktol. A selection of these
meshes is shown in Figure 2, while Table II summarises the values of the mesh parameters
employed, together with the numbers of elements, unknowns and boundary vertices for each
initial mesh. Notice that we have chosen to take

ktol8hmax
3 (41)

in each case. Thus, when ktol is halved, the number of boundary nodes doubles but the number
of interior nodes increases only by a factor of 22/3:1.59. The choice of the relationship (41)
is made in the light of the theoretical convergence rate of the boundary conditions and allows
much finer boundary discretisations to be used than would otherwise be feasible. In all cases
we have taken hmin=0.0001. Figure 3 illustrates the evolution of mesh 3 with a series of
snapshots taken at the dimensionless times shown after the initial contact of the two cylinders.
As can be seen, both the number of elements and their connectivity change considerably as the
cylinders merge.

The large, sparse systems of linear equations arising from the FEM are solved using the
Orthomin form of the conjugate residuals method [36–38], employing only the simplest of
preconditioners, namely diagonal scaling. Since the condition number associated with the
problem is typically large (106–108), each linear system must be solved to a high accuracy.
Each linear solve is terminated when the L2 norm of the residual has been reduced below an
absolute tolerance of 10−10. The second column in Table III lists the numbers of Orthomin
iterations required to solve the initial linear problem for each of the meshes considered. It can
be seen that the number of iterations is roughly proportional to N, the number of unknowns,
for each problem, and since the cost of each iteration is dominated by a single sparse matrix
product, the asymptotic work rate is O(N2). The third column gives the number of steps
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Figure 3. The coalescence of two infinite cylinders—evolution of mesh 3.

required to integrate the system forward to a time t=4.0, the fourth column the number of
remesh operations required and the final column gives the average processor time per time step
for each run on a 180 MHz SGI R5000 workstation. As these figures show even the
moderately sized meshes employed here require considerable computational resources.

In order to reduce the number of iterations required for each linear solve a second-order
explicit predictor is computed using previous solutions. The order of this predictor is reduced
to one for the second step after a remesh and immediately after a remesh a zero vector is
employed as the initial guess. Figure 4 shows how the number of unknowns varies during the
solution of the problem when mesh 3 is employed, while Figure 5 shows the number of
Orthomin iterations required for each time step, a spike occurring whenever the domain is
remeshed. Figure 5 clearly demonstrates the effectiveness of the second-order predictors in

Table III. The coalescence of two infinite cylinders—run statistics

Average timeIterations StepsMesh Remeshes
per step (s)

231 1619 1548 54
44149176618792
693 2253 2085 71

4 1047726482686
221130338336815
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Figure 4. Number of unknowns as a function of time—mesh 3.

reducing by up to 50% the number of iterations required, particularly in the later stages of the
problem.

4.1. Con6ergence rates

As a convenient way of assessing the accuracy of the method the velocity of the free surface
in the neck region is considered. It is reasoned that this is a good test of overall accuracy since
the neck is the region of maximum activity, both physically and in terms of the number of
mesh–boundary modifications carried out. The neck radius is defined here as half the
minimum distance between nodes lying on opposite sides of the neck, while neck 6elocity is
defined as the rate of change of the neck radius. In the later stages, when the neck has nearly
disappeared, the choice of neck nodes is frozen for the remainder of the computation.

Figure 6 shows both the exact and computed neck velocities for mesh 3 as it evolves with
time. The computed solution is in good agreement with the exact solution, with relative
velocity errors of less than 2%, even for a mesh as coarse as mesh 3. The largest error in
velocity is always observed to occur during the initial stages of the evolution when the neck
curvature is at its greatest and the driving forces are largest. Figure 7 shows the computed neck
velocities during the early stages of the problem, for each of the meshes employed. For the
coarser meshes in particular, a certain amount of noise superimposed on the computed neck
velocity is observed, which is perhaps understandable for a discrete simulation. In particular,
it should be noted that the largest components of the noise arise when the domain is remeshed.
It is clear, however, that the level of noise decreases rapidly as we refine the mesh, and that its
amplitude is a fraction of the error in the velocity, for all the meshes considered. Linear
approximations to the neck velocity between times t=0.3 and t=0.32, were found using a
least-squares fit and used to interpolate the neck velocities at time t=0.31. The resulting
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Table IV. The coalescence of two in-
finite cylinders—neck velocity error at

t=0.31

Neck velocity errorktolMesh

1 0.02720.2000
0.01890.14142

3 0.1000 0.0127
0.00890.07074
0.00610.05005

velocity errors are shown in Table IV and plotted against ktol in Figure 8 from which it can be
observed that the velocity errors converge with a rate of O(ktol).

To understand why only an O(ktol) rate of convergence is achieved, the way in which the
boundary conditions are computed from the piecewise discontinuous boundary representation
employed must be considered. Since Equation (35) is an identity in exact arithmetic, its use
cannot affect the asymptotic convergence rate of the boundary conditions. Thus, boundary
conditions computed using (35) can only ever have the same order of accuracy as the value of
k(s) that could be computed using the standard formula for the curvature, i.e.

k(s)=
yssxs−xssys

(xs
2+ys

2)3/2 . (42)

Since the free surface is represented by the piecewise quadratic function s(s), accordingly yss is
represented by a piecewise constant function. Thus, even if xs, ys and xss are known exactly, the
computation of k(s) can never be better than O(h)-accurate for an edge of length h.

Figure 5. Number of Orthomin iterations per time step as a function of time—mesh 3.
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Figure 6. Neck velocity as a function of time for mesh 3: —, exact; 2, computed.

Higher-order schemes for computing approximations to k and n, such as those employed in
[14], which involve finite difference stencils encompassing boundary nodes belonging to
adjacent elements, are of course a possible alternative. In the absence of the necessary
smoothing, however, such formulae typically result in much less accurate values for k and n
than the direct approach employed here.

A further potential problem that results from the low-order accuracy of the computed
free-surface velocities is the tendency for free-surface instabilities to arise. Since the boundary
conditions here are O(h)-accurate, the computed free-surface velocities are similarly only
O(h)-accurate. This causes problems since these velocities are relied upon to update an ideally
O(h3)-accurate boundary representation. While the effects of such errors in the boundary
conditions tend to cancel out over longer ranges, locally they can lead to the free surface
developing oscillatory structures, resulting in edges with incorrect curvatures and unrealistic
discontinuities in the tangent at free-surface vertices. Where similar oscillatory phenomena are
observed by other authors [9,12], additional smoothing of the free surface is commonly carried
out. Since the current method makes no a priori assumptions about the smoothness of the free
surface, it automatically refines the mesh in such regions, leading to the use of unacceptably
short time steps. Although this difficulty does not arise in the solution of the problems
described here, there are some problems for which this is a serious limitation, particularly
where the semi-explicit method is employed, due to the effects on the time step.

4.2. Tangential stress error

As a further check on the accuracy of the method, the free-surface tangential stress as
recovered from the discrete solution obtained using mesh 3 at a time t=0.29 is considered. If
the boundary conditions described in Section 3 are being respected exactly, then the tangential
stress component should be zero everywhere on the free surface. Figure 9 shows the recovered
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Figure 7. Initial stage velocities: —, mesh 1; · · · · , mesh 3; - - - -, mesh 5; – – – –, exact.

normal and tangential stresses in the neck region, as functions of arc length, the maximum
dimensionless normal stress being approximately 85. As the figure shows, the tangential stress
error is not negligible, although it is a small fraction of the imposed normal stress.

The tangential stress errors observed are a direct consequence of the piecewise discontinuous
nature of the free-surface representation employed. In order to understand the source of these
errors, for simplicity, a single free-surface vertex on the boundary of a mesh that is symmetric
about the normal at the vertex, as shown in Figure 10, is considered. Since the mesh is
symmetric about B, both the geometric and the mass-consistent normals coincide. The crucial
point is that even if we start out with a mesh with no discontinuities in the tangent at vertices
we have no guarantee that such discontinuities will not arise as the free surface evolves. If there
is continuity of the tangent at B then the normal n will be orthogonal to both the tangents t1

and t2. Thus, the imposed normal stress will have no component parallel to the tangent on
either adjacent edge. However, when the tangent is discontinuous at B, the imposed normal
stress will have a non-zero component parallel to each of the two tangents at B, and tangential
stress errors will result. In the configuration shown, the resulting tangential stresses, on sides
AB
�

and BC
�

, resulting from an applied normal stress ŝn will be

ŝn(n ·t1)= ŝn sin(8), (43)

− ŝn(n ·t2)= − ŝn sin(8), (44)

that is the tangential stress errors are of equal magnitude but opposite sign. At the vertex B,
the two errors cancel out, but along the two adjacent edges this does not happen. When the
mesh is not symmetric about B, the situation is more complicated and a net tangential stress
error can result. As Figure 11 shows, as the mesh is refined the observed tangential stress error
is reduced considerably. Theoretical considerations suggest that the tangential stress error
should depend linearly on ktol and Figure 11 appears to confirm this.
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Figure 8. Convergence rate: neck velocity error at t=0.31 as a function of ktol.

4.3. Conser6ation of mass

As a final test, mass conservation is considered. Figure 12 illustrates how the domain area
varies with time in the case of mesh 3. The area changes slightly during the course of the
problem, but never by more than 0.01%. For the present semi-explicit method the rate of mass
loss is found to depend, in an approximately linear fashion, on: time step, free-surface velocity
and the value of ktol. Since the time step is typically constrained by (37) to be proportional to
ktol, the overall rate of mass loss for the semi-explicit method is thus inversely proportional to
ktol.

Three sources of mass conservation error are readily identifiable: errors due to inaccuracies
in the solution of the linear systems, errors due to boundary modifications and errors due to
the free-surface advection scheme. The first of these is easily dealt with by increasing the
accuracy to which the linear systems are solved, resulting in a more exact imposition of the
incompressibility constraint. The errors due to boundary modifications are also easily under-
stood. Since conservation of mass is not directly enforced when edges are split, merged and
adjusted, there are necessarily small errors introduced whenever the boundary is modified. We
could, of course, elect to impose mass conservation through the choice of midpoints when
merging/splitting elements, but for the present the approach of trying to represent the
boundary as accurately as possible is preferred, due to potential effects on the accuracy of
boundary conditions. This source of error can only be reduced by taking a finer discretisation
of the boundary. Contrasting the piecewise boundary update strategy described in Section 2
with the alternative approach of periodically remeshing the entire boundary [14], it should be
noted that our method has the advantage that it introduces mass conservation errors only at
those points where the boundary is actually modified. A further interesting comparison can be
made with methods, such as that described in [22], which impose conservation of mass directly
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Figure 9. Normal and tangential stress in the neck region at t=0.29: – – – –, normal stress; —, tangential stress.

by replacing the kinematic boundary condition with a free-surface update procedure based on
volume of fluid considerations. These methods, in principle, impose conservation of mass
exactly and must, as a consequence, impose the kinematic boundary condition only approxi-
mately. Furthermore, volume of fluid methods are applicable only to problems in which an
appropriate conservation law, such as incompressibility, applies. The final source of mass
conservation error results from the time stepping scheme employed. It is clear that for an
explicit scheme, even if the solution at the start of a time step satisfies the incompressibility
constraint, it will not in general do so at the end of the time step. This source of error appears
unavoidable, though it can be reduced by employing finer meshes and shorter time steps. For
an implicit time stepping scheme, on the other hand, the linearity of the incompressibility
constraint means that this source of error is absent and consequently the only significant

Figure 10. Discontinuity in the tangent at a free-surface vertex B: n=normal, t1= tangent on edge AB
�

, t2= tangent
on edge BC

�
.
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Figure 11. Tangential stress—centred on the neck region at t=0.29: - - - -, mesh 1; – – – –, mesh 3; —, mesh 5.

Figure 12. Conservation of mass: percentage change in domain area as a function of time—mesh 3.
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Figure 13. Stokes flow evolution of a cross with rounded corners.

source of mass conservation error will be due to the occasional splitting, merging and
adjustment of edges.

4.4. A further example

In principle there is nothing to prevent the methods described in Section 2 from being
applied to a broad range of free-surface problems. Our initial experimental investigations
suggest that the inclusion of inflow, outflow and no-slip boundary conditions is unproblematic,
so long as the constraints (38) and (39) are appropriately modified. When selecting initial
free-surface configurations, care must be taken, however, when the derivative dk/ds is large, or
k is discontinuous.

As a further example of the general applicability of the current method, we consider the
evolution of the domain shown in Figure 13, starting at the dimensionless time t=0.0. Note
that, for convenience in the generation of the initial mesh, we have used a smaller value of hmax

than that used for the remainder of the problem. The boundary has been constructed by taking
a cross shape and replacing the interior and exterior corners with short circular arcs of radius
R, which in principle could be made arbitrarily small. While the curvature along the straight
sides is zero, at the rounded corners it suddenly jumps to the value 9 (1/R). Thus, initially at
least, dk/ds is unbounded at the points where straight sides meet circular arcs. As the mesh
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evolves, the initial discontinuities in k smear out, resulting in extended regions of the free
surface where dk/ds is large. We could, of course, avoid the initial discontinuities entirely by
employing fourth-order splines rather than circular arcs. This problem illustrates well the sort
of configuration that would be difficult to model using the method of spines [1], but which the
new method handles with ease and with minimal set-up time.

5. CONCLUSIONS

The strategy of using an elastic deformation of the mesh whenever possible and performing a
full remesh only when necessary appears to work satisfactorily; in practice, the technique is
robust and the choice of the constants employed is not critical. The approach is economical
with the user’s time since the setting up of a new problem involves only the selection of an
initial boundary mesh. The semi-explicit method would appear to be an attractive solution
strategy for the type of free-surface problem considered here—at least in the absence of
extremes of curvature.

Experiment confirms the theoretical prediction that for piecewise quadratic isoparametric
elements the stress boundary conditions are O(h)-accurate and consequently so are the
computed boundary velocities. In searches of the available literature the authors have been
unable to find numerical evidence that contradicts this finding.

The methods described here constitute a general purpose tool for investigating free-surface
flow problems with arbitrary geometry, complementing the existing BEM and FEM tech-
niques, where they are applicable, and opening up lines of investigation for problems to which
existing methods are not applicable.
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